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term.
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1. INTRODUCTION

Fractional differential equations are the generalization of ordinary differential
equations to non-integer order. This generalization has interesting applications
in various fields of chemistry, physics, mechanics, economics, electrodynamics etc.
[1, 10]. Boundary value problems [BVP] of fractional differential equations have
widespread attention and some attractive results obtained [I, 7, 9, 19] recently.
Monotone iterative technique plays an important role to obtain existence of solutions
of nonlinear fractional differential equations [5]. This technique is used to obtain
the solutions of nonlinear initial value problems [6], boundary value problems [2,
[4, 19, 21]. Existence and uniqueness of solutions of Riemann-Liouville fractional
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differential equations with integral boundary conditions is obtained by Nanware et.
al. [8]. Sun and Zhao [12] studied the fractional differential equations with integral
boundary conditions using monotone iterative method.

In the recent years, the theory of singular boundary value problems has become
an important area of investigation [3, 13, 17, 18]. The existence of solutions by using
various methods such as lower and upper solution method and fixed point theorem
is proved. In [20] X. Zhang et al. obtained the existence and uniqueness of positive
solutions when ¢ has singularities at 7 = 0 and (or) 1 by using monotone iterative
method. In 2020 [11] S. Song et al. investigated the existence of extremal solutions
by using monotone iterative technique coupled with lower and upper solutions for
the problem

~Dgx(r) = glr2(r), T € 0.1
H0)=0,  =(1) = / 2(s) dn(s),

where 1 < v < 2, Dg, is the Riemann-Liouville fractional derivative and 7(r) is a
positive measure function. Y. Wang et al. [15] studied the positive properties of
the green function for the Dirichlet-type problem

{—D5+z(r) +az(r)=g(r, z(r)), 0<r<l,
z(0) =0, z(1) =0,

where 1 < v < 2, a > 0, Dy, is the Riemann-Liouville fractional derivative. Y.
Wang et al.[16] established the existence of positive solutions for resonant problem.

Inspired by the aforementioned works, in this paper we give some sufficient con-
ditions, under which following problems have extremal solutions

Dy, z(r)+g(r,2(r) =0, 0<r<l1, l-1<v<l,

2B(0)=0, 0<k<i-2 z(1>=/012<s)dn<8)’ "

where, Dy, is the Riemann-Liouville fractional derivative of order [ > 2, [ € N,
g has singularities at » = 0 and (or) 1, 7 is a function of bounded variation and

1
/ z(s)dn(s) denotes the Riemann-Stieltjes integral of z with respect to 7, dn can be
0

signed measure . The layout of this paper is as follows: In section 2, we present some
basic definitions and lemmas that will be used to prove our main results. Section 3
is devoted to uniqueness of solution to BVP (1.1) by using Banach contraction prin-
ciple. In Section 4, we developed the monotone iterative method and applied it to
obtain existence and uniqueness results for Riemann-Liouville fractional differential
equations with integral boundary conditions.

2. PRELIMINARIES

In this section, we present some useful definitions and lemmas that will be used in
the next section to attain existence and uniqueness results for the nonlinear of BVP

(1.1).
Definition 2.1. [10] The Riemann-Liouville fractional integral of order v > 0 of a
function 2 : (0,00) — R is given by
1 T
IYz(r) = —/ (r—s)""1z(s)ds
I'(v) Jo

provided that the right-hand side is pointwise defined on (0, co).
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Definition 2.2. [10] The Riemann-Liouville fractional derivative of order v > 0 of
a function z : (0,00) — R is given by

G [

where [ € N as the unique positive integer satisfying [ — 1 < v < [, provided that
the right-hand side is pointwise defined on (0, 00).

D¥z(r) =

Definition 2.3. A function &y € C([0, 1]) is called a lower solution of BVP (1.1)
if it satisfies

Dy, ao(r) +g(r,2o(r)) >0, 0<r<ll-1<v<l,

w0 =0, 0<k<i-2, (1) < /01 Fo(s) di(s)- >

Definition 2.4. A function g € C([0, 1]) is called a upper solution of BVP (1.1)
if it satisfies

Dg, yo(r) +g(r,go(r)) <0, 0<r<l1, I-1<v<l,

! (2.2)
(B) oy . .
Up (0) =0, 0<k<[-—2, Po(1) > | yo(s)dn(s).
0
Denote
v—2 >
plr) = T(v—1) +z:lf /<:+11/7 2)
It is easy to check that (see [15, 16])
v—2
p(0) = Tw—1) <0,
oo Fh—1
D=3 rgre Ty 7o 0
k=1
and
Therefore, there exist a unique a* > 0 such that p(a*) = 0.
Set
— =1 v
Go(r)=r"""E, ,(ar”), where E, ,( ];) I k T (2.3)
is the Mittag-Leffler function ([4, 10]).

For convenience, we list here the following assumptions.
B1] the parameter a satisfies a € (0,a*],

1
B2] n(r) is bounded variation in (0,1) such that 0 < a < 1, a = / Go(s)dn(s)
0
1
andOSCn(s):/ Hy(r,s)dn(s), 0 < G / Ga(s)dn(s
0
B3] g € C((0,1) X [0, 50), [0, 50)) and

g(r,u) —g(r,v) > —a(u —v) for &g <u <wv < g, r € (0,1).
Set
Ku(r,s) = Ho(r,s) + Go(r)R*(s)
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where,
*(o) Gn(s)
h (S)*Ga(l)_aa
1 1—s)— — 1) fo0<s<r<1
Ho(r,s) = Go(r)Go(1 —8) — Go(r — 5)Ga(1) 1 0<s<r< (2.4)
Ga(1) | Gu(r)Ga(1 — s) fo<r<s<I.
Lemma 2.5. [15] Suppose that [B1] holds and y € L[0,1]. Then the problem
—Dg,2(r) +az(r) =q(r), 0<r<1,
z(0) =0, z(1) =0,

has a unique solutions

2(r) = / H,(r, 8)q(s) ds,

where

H,(r,s) =

1 Go(r)Ga(l —3) — Ga(r —s)Ga(1) if0<s<r<1
Ga(1) | Ga(r)Go(1 —s) fo0<r<s<lI.

Lemma 2.6. Suppose that [B1], [B2] hold andy € C([0,1]). Then linear fractional
boundary value problem

Dy, z(r) —az(r)+q(r)=0, 0<r<l1, I-1<v<l,
1 (2.5)
Z0)=0, 0<k<I-2, z(1) = / z(s) dn(s),
0
has the following unique solution
1
z(r) = / K, (r,s)q(s)ds.
0
Proof:- First apply I” on linear equation (2.5) and using result, see in [4, 10], we
get
2(r) = — / Galr — 8)q(s) ds + CoGla(r) + C1CA(r) + CaGlr(r) ... + Craa G ().
0
(2.6)
Since z(0) = 0 then C;_; = 0. Similarly
Z(0)=2"(0)=...=2"72(0)=0
gives
Ci=Cy=...=Ci_o=0.

Then equation (2.6) becomes

z(r) = — /OT Go(r — $)q(s) ds + CoG(r).

1
Using z(1) = / z(s) dn(s), we obtain
0

a=gsf i)+ [ Galt o ).

() = = [ Gulr = ate)ds + 15 [ / (s)dns) + / ' Gal — a(s) ds} |
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_ Ga(r) [ Ga(r) ["
ff/o Ga(rs)q(s)ds+Ga(1)/O z(s)dn(s)+Ga(1)/O Ga(l — s)q(s) ds

Ga(r) [*
1) : Go(1—9)q(s)ds,

; [Ga (1= 58) = Go(1)Go(r — 8)] q(s)ds

1 Ga(r) 1
+Ga(1 / Go(r)Ga(1 —8)q (s)derGa(l)/o z(s) dn(s),

; H,(r,s) (1)/0 z(s) dn(s).

Let,

/ //HST ) drldn(s /G / (5) dn(s).

Therefore
/G ) dn(s / ><>a[%3mmemm@

A(Mn t/ _ffm@mmmma
—aa | Gal

Therefore  z( /H (r,s) ds+ ()

1%b[@@wJ
//HST T)drdn(s),
/Hrs ds+ / //HST 7) drdn(s),
Gl
:/01
0= [ Kalrsiato)a

Lemma 2.7. Suppose [B1], [B2] holds,then the function K,(r,s) has the following properties

Ho(r,s) + ‘;(T) /O Ha(s, T)dn(T)] q(s) ds,
1

(i) Kq(rys) >0 Vor,se(0,1),
(i) a(s)r'=t < K,(r,s) <y(s)rv=t, Vrse(0,1)

where, () = Ga(1 — ) + Ga(DA*(s), ta(s) = oy h*(s).
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Proof:- We need to prove that (2) holds. By equation (2.7)

v—1

e <Gur)=rtY FL <r'71G.(1), re(0,1). (2.7)

(kA ) — 2
D N ((FSITES R

oz aF[(k + 1) — 2]k
N 32 (k+1)v—1) ~

v—2 > afrkv[(k 4+ 1)v — 2]
+;§1 T((k + v — 1) ]

3 [ v—2 > akrkr ]

—

T D T TG D

k=1
=7r""3plar’) <r"3pla) < 1" 3p(a*) =0, 7€(0,1), (2.9)
which implies that G,(r) is strictly increasing on (0,1) and G, (r) is strictly de-
creasing on (0,1). Therefore by (2.7) we have,
Ku(r,s) = Ho(r,s) + Go(r)h*(s),
< Ga(r)Go(1 — )
T Gl
Ga(l—9)
Ga(1)
Ga(l—) 3
* v 1
G ] e
= [Ga(1 = 5) + Ga(W)R"(s)]r" 71,
=y (s)r” (2.10)
where, ¥1(s) = Go(1 — s) + G4(1)h*(s).
On the other hand, when 0 < r < s < 1. Note that G,(0) = 0 and monotonocity
of G4 (r), it is clear that

+ Ga(r)h*(s),

(6] Gl

IN

Ga(r)Ga(1 —5) > 0. (2.11)

Hence H,(r,s) > 0 and also by [B2], K4(r,s) >0 when 0 <r <s < 1.
When 0 < s < r < 1, we have

0

55 [Ga(r)Ga(l = ) = Galr = 5)Ga(1)] = =Ga(r)Gy(1 = 5) + Ga(1)Gy(r = 5)

> [Ga(1) = Ga(r)]G(1 = s). (2.12)

Integrating with respect to s, we obtain

Gu(r)Ga(l — ) — Galr — $)Ga(l) > / Gu(l) — Ga(mICL(1 — 1) dp,
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Ga(1 1— M)]S

)

~[Gu(D) - Gl | 0
= [Go(1) — Go(M)][Ga(1) — Go(1 — 8)] > 0.
(2.13)
Then, by (2.4), (2.11), (2.13), we get
Hy(r,8) = Go(r)Ga(l — 8) — Go(r — 8)Go(1) >0 7,5 € (0,1).
Now,

Ka(r,5) = Ha(r,5) + Ga(D)h*(s) > Ga(r)h*(s),

Tu—l

>
~I'w)
where, 15(s) = F(ly) h*(s). Hence the proof.

h*(s) = ha(s)r’ 1 >0 rs€(0,1)

Lemma 2.8. F0r0<7"1<7"2<1
(1) [Ga(r2) = (7'1)\ < Eyp-1(a) |ra = 1] = Ga(l)|ra — r1],
(ii) |Galrz — ) = Galr1 — )| < By, y—1(a) lr2 — 71| = Ga(1)|r2 — 1],
(iii) |Ha(r2,s) — Ha(r1,s)| < 2[Ga(1)]P|r2 — 11,
(iv) |Kqa(re,s) — Kq(r1,s)| < 01;1‘?%<1|Ka(r2,s) — Ku(r1,8)] < Go(1)[2G.(1) +

[ ()2 = -

1] |Ga(re) — Ga(r1)| = |7’5_1El, v(ary) — T?_lEu u(a"”lf)|
k,.vk k,.vk
-1 a-rs — Y- 1 a'ra
= |2 Z T((k+1)v Z T((k+ 1)v
o0 k

=2 T((k+1)v) 2

k=o

(k+1)—1 ﬁ(kﬂ)q‘ .

Applying mean value theorem, we get

rg(k+1)_l — r;(kﬂ)_l <[vlk+1)—=1](ry — 7).

Therefore
= a*[v(k 1]
|Ga(rs a(r1 |<Zwlrzﬂ"1l,
oo

) ;m““? —ril,

= Euvy_l(a)"f‘g 77’1| = Ga(1)|1"2 7T1|.

2] |Gu(ra —s) — Galr1 — 8)| = ‘ ro — s)”_lE,, ,,(a(rg — s)”) —(r1 — s)”_lE,,,,j(a(rl -9,
_ 1/ 1 — S v—1 S ak(r B S)Vk
= 7"2—8 Z I€2—|—1 ('1”1—8) kzzom7

=3 gy 0 O e

Applying mean value theorem, we get
(rg — s)VFFD=L () — )P *AD=L (ke 4 1) — 1](rp — 7).
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Therefore

> k
a
|Ga(7’2 — S) — Ga(rl — S)| < kE:O m‘rg - Tl‘
=FE, ,—1(a)lrs — 1| = Galra — r1]

3 [Ha(rz,s) = Ha(r1, 8)| = [[Ga(r2)Ga(l = 8) = Ga(1)Ga(r2 — 5]
= [Ga(r1)Ga(l = s) = Ga(1)Ga(r1 — s)]l,
< Ga(l = 9)|Ga(rz) = Ga(r1)| + Ga(1)|Ga(r1 — s) — Galr2 — 5)|,
< Ga(l=5)Ey,,(a)|r2 — 11| + Ga(1) Ey, v (a)|rz — 1],
:Ev,V(a)[Ga(1_5)+Ga( Nlra =1l
=Ga(1)[Ga(l = s) + Ga(1)]|r2 — 11,
< 2[Go(1)]?|ry — 7.

4 [Kalra,s) = Kalri,s)| < max |Ko(ra.s) = Ko(r,9)]

= max [[Ha(tz,5) — Ha(tr,9)] + [Galta) — Galra)}"(s)].

<2[Ga(VP|rz = 1] + Ga(D)lr2 = r1]|h* (s)],
= Ga()[2Ga(1) + [P*(s)l]Jr2 = .
Hence the proof.
3. MAIN RESULTS
Let ¢ = C([0,1]) be endowed with the norm ||z|| = max, |z(r)], then (€, |.||) is

0<r
a Banach space. Now we define the operator T': € — € by

1
= / Ko (r,s)g(s, z(s)) ds.

0
Theorem 3.1. Prove T : € — € is uniformly continuous.

Proof:- The operator T : € — % is continuous in the view of non-negativeness

and continuity of K,(r,s), Hu(r,s) and g(r,z). Let S C € be bounded ie. 3 a

positive constants M > 0 such that ||z|| < M V z € S, Let L* = Jnax lg(r, z)| then
T

by Lemma 2.7 the operator T : S — € is bounded uniformly. Now to prove T(S)
is equicontinuous.
If z€ S, 0<ri <ry <1 then

(T2)(r2) — (T2)(r)] = ‘/ o(r2,8) — Ko(r1,8)]g(s, 2(s)) ds| ,
< o, / Kalr2,9) — Kalr, o)l (5))| s,

< L*Ga(U)fry — 7] / 26 (1) + [1*(s)) ds,

< L*Ga()frs — m|[2Ga(1 / IB*(s)

Then |(Tz)(r2) — (Tz)(r1)] — 0 uniformly as r;1 — ro. This shows that T'(.S) is
equicontinuous on ¢. Then by Arzela-Ascoli theorem, the operator T': € — € is
completely continuous.
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Theorem 3.2. Assume that [B1], [B2] holds. Then there exist nonnegative constant
N* such that function g satisfies |g(r,x)—g(r,y)| < N*|a—y|, r € (0,1), z,y€F
and let1

A= / ¥(s)ds then the BVP (1.1) has a unique fized point.
0

Proof:- For any z,y € ¥, r,s € (0,1) and using Lemma 2.7

IT2(r) = Ty(r)| = max [Tx(r) - Ty(r)l,

max
0<r<1

1
— max / Ko, 8)|lg(r ) — g(r, )| ds,
0

0<r<1

/0 Ka(r,)[g(r,3) — g(r,y)] ds

IA

1
PN o=yl [ o) ds
0
=" IN*Afju — v
Then by Banach contraction mapping theorem, 7" has a unique fixed point in %,
i.e. the BVP (1.1) has a unique solution. The proof is complete.
4. MONOTONE ITERATIVE METHOD

In this section, we develop monotone iterative technique combined with the
method of lower-upper solutions and we prove the existence and uniqueness theorem
of solution for BVP (1.1). For &y, 30 € € with &9 < g for r € (0, 1), we denote

OF = [a"}(),yo] = {Z €EC 1o < Z(’I“) < Yo,r € (0,1)}.
Lemma 4.1. Assume that [B1], [B2] holds and z € € satisfies
—DVz(r) + az(r) > 0,

20 (0) = 0, zu)zllaﬁm@) (4.1)

then forr € (0,1), z(r) > 0.
1
Proof:- Let ¢(r) = —D"z(r) + az(r) and d = z(1) —/ z(s)dn(s). Then from

0
equation (4.1), we have ¢(r) > 0, d > 0. Then by Lemma 2.6, the problem (2.5)
has unique solution which can be expressed as
1

Z(T) = ; Ka(r,s)q(s) ds,
- ) H,(r,s)q(s)ds + / o / Ha(r, ) dn(s)
where,
Ha(r,s) = 1 Ga(r)Ga(1 = 8) — Ga(r —8)Ga(1) f0<s<r<i1
T Ga(D) | Galr)Gall =) if0<r<s<l.

Then by Lemma 2.7, Hy(r,s) > 0 and Ky(r,s) >0V r,s € (0,1). Hence z(r) > 0,
Vr,se(0,1).
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Theorem 4.2. Suppose [B1], [B2], [B3] holds, then there exist monotone iterative
sequences {&m}, {Um} C Q* such that & — &, Ym — ¥ as m — oo uniformly in
O and z, y are a minimal and mazimal solution of BVP (1.1) in Q* respectively.

Proof:- For &,,—1, Ym—1 € €, m > 1, we define two sequences {&,}, {ym} respec-
tively by the relations,

Dg &m(r) — a(dm(r) + :'Em_ll(r)) +9(r,Zm_1(r))=0, 0<r<1
E0)=0,  dn(1)= /0 & (s) dn(s)
and
D§ G (1) — a(m (r) + ym_%(r)) +9(r Ym-1(r)) =0, 0<r<1,
O =0 () = [ () dnte)
Then by Lemma 2.6, {Z,}, {¢m} are well defined. Firstly we need to show that
Lo(r) < 21(r) < gu(r) < go(r) for any r € (0,1).
Set p(r) = 41(r) — o (r) and by definition of &4 (r) with lower solution & (r) we get,
—Dg,p(r) + ap(r) = =Dgy (#1(r) = 2o(r)) + al@1(r) + @o(r)),
= —Dgya1(r) + a(ié(r) + do(r) + Doy @o(r),
2 —a(i(r) + @o(r)) + g(r, 2o(r)) + a(r(r) + @o(r)) — g(r, 2o(r))
=0.
Also,p®)(0) = £{7(0) — i (0) =0,
p(1) = @1(1) — @o(1)

- [ " b(s) dn(s) — / " ro(s) dn)
:/01[:'51(5)—560(8)] dn(s)=/01p(8) dn(s).

Then by Lemma 4.1, p(r) > 0 = &1(r) > @o(r), r € (0,1).

Now to prove ¢1(r) < go(r) Vr € (0,1). For this, set p(r) = ¢1(r) — yo(r) and by
definition of ¢ (r) with upper solution go(r) we get,

—Dg,p(r) + ap(r) = =Dg, (42(r) = go(r)) + a(gr(r) + go(r)),

= =Dy 91(r) + a(1(r) + 9o(r)) + Dgy9o(r),

< —a(§1(r) +9o(r)) + g(r, 90(r)) + +a(@1(r) + go(r)) — 9(r,go(r))
0.

Alsop™® (0) = 51 (0) — 45 (0) = 0,
p(1) = 91(1) — 9o(1),
n(s) dn(s) — / dols) dn(s),

1

S— ™—

[ (5) — g0(s)] dn(s) = / 5(s) dis).

Then by Lemma 4.1, p(r) <0 = g1(r) < go(r), ¥Vr € (0, 1).
Now to prove @1(r) < g1(r) Vr € (0,1). Set p(r) = 91(r) — @1(r). Then by [B3] and
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definition of @1 (r), 1 (r), we get

— D, p(r) = = Dfy [in(r) — 1 (r)],
= =Diyin(r) = =D, (1)
= g(r,50(r)) — alin (r) — 9o(r)] — lg(r, a0 (r)) — alir (r) — G0 ()],
[9(r,90(r)) — g(r, 0 ()] — algn (r) — 9o (r)] + alizs (r) — oo (r)],
> —a(jo(r) — do(r)) — algn(r) — go(r)] + alix (r) — do(r)],
= —a(in(r) — @1(r)) = —ap(r).
Alsop™ (0) = 51" (0) — 2{”(0) = 0,

p(1) = (1) — 1 (1 / - / 1 (s) dn(s),
-/ " 5(5) dn(s).

Then by Lemma 4.1, p(r) > 0 = &1(r) < g1(r) Vr € (0,1). Now by mathematical
induction method, it is easy to verify that

o(r) < @1(r) <do(r) < ... < @p(r) < gm(r) < .. 9n0(r) < go(r).
Thus the sequences {Z,,}, {¥m} are uniformly bounded and monotonically non-
decreasing and non-increasing in %’. Hence the point-wise limit exist and are given
by lim @y (r) = @(r), lim gm(r) =y(r) on €. Next we claim that &(r) and y(r)
m—o00 m— 00
are the extremal solutions of BVP (1.1). Let z(r) be any solution of BVP (1.1)
different from z(r) and g(r) in Q*. So there exist some i such that @;(r) < z(r) <
gi(r), r € (0,1). Set p1(r) = z(r)—Z;41(r). So that, by assumption [B3], we obtain
—DV]')l (’I“) = —DUZ(’I“) — (—Dyi‘H_l),

=g(r,2(r)) = [g(r, &:(r)) — a(@ipa(r) — :(r))];
lg(r, 2(r)) = g(r, & (r))] + al@ip1 (r) — &i(r)),
—a(z(r) = &i(r)) + a(@ipa (r) — &:(r)),
—alz(r) = @i(r) = &2 (r) + &:(r)],

= —a(z(r) — Ziy1(r)) = —ap1(r),

P00 =0, (1) = / P (5) dn(s).

Then by Lemma 4.1, p1(r) > 0 implying that 4,41 (r) < z(r) for all 4. Similarly set
P2(r) = Yiy1(r) — z(r) and using [B3] we obtain
—D"pa(r) = =D"Yit1(r) — (=D"2(r)),

= lg(r,9i(r)) — a(Gis1(r) = gi(r)] — g(r, (7)),
[9(r;95(r)) — g(r, 2(r))] = al@i+1(r) — (7)),
—a(gi(r) — 2(r)) + a(@isa(r) — 5i(r)),
—algi(r) = 2(r) = Gia (r) + 3:(r)],

—a(giy1(r) — 2(r)) = —apa(r),

1
k) = ) = )5 (S s).
(0) =0, p2<1>f/0 pa(s) di(s)

—~ —

v
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Then by Lemma 4.1, pa(r) > 0 implying that z(r) < ¢;41(r) for all i. Hence
ip1(r) < z(r) < gip1(r), r € (0,1). Since @o(r) < z(r) < go(r) on €. Hence by
induction method, it follows that @;(r) < z(r) < ¢;(r) for all i. Taking limit as
i — 00, it follows that @(r) < z(r) < g(r) on €. Thus the functions &(r), y(r) are
the extremal solutions of the BVP (1.1). The proof is complete.

Next we prove uniqueness of solutions of the BVP (1.1).

Theorem 4.3. Assume that,
(i) [B1], [Ba], [Bs] holds,
(ii) there exists a > 0 such that the function g satisfies the condition
g(r,v) — g(r,v*) <a(v—20") (4.2)
for iog < v <v* <gg,r € (0,1).
Then the BVP (1.1) has a unique solution in Q*.

Proof:- We know z(r) < g(r) on ¥. It is sufficient to prove that &(r) > y(r).
Consider p(r) = g(r) — &(r). Then we have

—DVj(r) = ~D"j(r) — (~D"i(r)),
= 9(r,§(r)) — 9(r, &(r)),
< —a(y(r) — i(r)) = —ap(r)

and
1
pO0) =0, p(1) = / B(s) dn(s).
0

By Lemma 4.1, p(r) < 0 implying that y(r) < #(r). Hence #(r) = ¢(r) is the unique
solution of BVP (1.1).

5. CONCLUSION

By implementing Banach contraction mapping theorem, it is shown that the
mapping T has a unique fixed point in ¢’. Monotone iterative sequences {i,} and
{Ym} converging uniformly to (r) and y(r) as m — oo respectively are constructed.
Monotone technique developed is applied to prove that &(r), ¢(r) are minimal and
maximal solutions of problem (1.1) in Q*. Uniqueness of solutions of the nonlinear
problem (1.1) with integral boundary conditions is also obtained.
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