Shrikrishna Shikshnan Sanstha,Gunjoti Shrikrishna Mahavidyalaya,Gunjoti Programme Specific Outcomes and Course Outcomes

Programme	Programme Specific Outcomes	Course	Course Outcomes
B.Sc.Mathematics	PSO1: Acquire knowledge in basic MathematicsPSO2: Communicate solutions of mathematical problems effectivelyPSO3: Equip knowledge in various	Differential Calculus	CO1: Solve problems on limits continuity and successive differentiation of Functions CO2: Determine partial derivative of function more than one variable CO3: Describe Rolle's Theorem, Lagrange's mean value theorem and Cauchy's mean value theorem CO4: Determine expansion of ex, sinx, cosx, sinhx, coshx, tanhx, log (ax+b) etc. CO5: Determine gradient, divergence and curl and directional derivatives
	 PSO3: Equip knowledge in various concepts involve in Calculus, differential equation, real analysis and algebra PSO4: Acquire a breadth and depth of understanding in mathematics PSO5: Understand reasonableness of solutions including sign, size, accuracy and units of measurement 	Differential Equations	CO1: Determine solution of first order linear differential equation CO2: Determine solution of exact differential equation CO3: Determine solution of linear equation with constant coefficient using general and short method CO4: Determine solution of linear homogeneous differential equation CO5: Explain formation of partial differential equation by eliminating the arbitrary constants and function
	PSO6: Apply mathematical proof techniques in a wide variety of mathematical areas, including algebra and analysis		CO1: Apply reduction formula CO2: Find integration of algebraic rational functions CO3: Apply fundamental theorem of integral calculus CO4: Find the area bounded by a curve CO5: Calculate the length of arc of a curve. CO6: Find line integral and surface integrals CO7: Apply the theorems of Gauss, Green's and Stoke's theorem

Geometry	CO1: Identify and use different type of equations of plane
Geometry	CO2: Determine equations of the system of planes and the
	length of perpendicular to a plane
	CO3: Determine equation of right line and the angle
	between the plane and line
	-
	CO4: Determine condition for coplanar lines and short distance between two lines
	CO5: Determine equation of sphere and its intersection with
Namel en These	the plane
Number Theory	CO1: Describe division algorithm
	CO2: Determine GCD and LCM by using Euclidean
	algorithm
	CO3: Describe method of solving linear Diophantine
	equation
	CO4: Determine solution of linear congruence
T / 1	CO5: Describe Fermat's and Euler's theorem
Integral	CO1: Define beta and gamma functions and derive their
Transform	properties and apply them in evaluating integrals
	CO2: Determine Laplace transform for various functions,
	properties of Laplace transforms
	CO3: Determine inverse Laplace transform, properties of
	inverse Laplace Transform, solve the problems using
	convolution theorem
	CO4: Determine Fourier transform, properties of Fourier
	transform, Fourier sine and cosine transforms
	CO5: Apply Laplace transform to find solutions of ordinary
	and partial differential equations
Mechanics-I	CO1: Describe different types of forces, triangle law of
	forces, Parallelogram of forces, resultant of forces, sine rule
	and cosine rule
	CO2: Explain resultant of several coplanar forces, equation
	of the line of action of the resultant, equilibrium of a rigid
	body under 3 coplanar forces
	CO3: Explain Lammi's theorem and polygon of forces
	CO4: Explain vector moment of a force and vector moment
	of couple and describe basic concepts of centre of gravity
	and its applications

Numerical Methods	 CO1: Explain Bisection Method, Method of False Position, Newton-Raphson Method CO2: Describe Finite Differences, Newton's Formula for Interpolation, Lagrange's Interpolation Formula, Divided Differences CO3: Describe Least Square Curve Fitting Procedures, Fitting a straight line, Chebyshev polynomial, Power series CO4: Calculate Solution of Linear system of equations, Eigen values and Eigen Vectors CO5: Calculate solution of ordinary differential equation by Taylor's series Method, Pierr's Method
Partial Differential Equations	Taylor's series Method, Picard's Method, Euler's MethodCO1: Solve Lagrange's equationCO2: Find different types of solutions like completeintegral, Singular integral and general integralCO3: Determine the solution of partial differential equationsusing Charpit's MethodCO4: Classify partial differential equations to special typesCO5: Describe Monge's Method, Method of transformation
Mechanics-II	CO1: Find velocity and acceleration in terms of vector derivatives, curvature, Angular speed and angular velocity CO2: Describe Radial and Transverse components of velocity and acceleration, areal speed and velocity CO3: Explain Newton's Law of motion, angular momentum, work, energy, vector point function, Field of force CO4: Describe motion under gravity, projectile, Motion of projectile, Parabola of safety,motion in resisting medium,areal velocity of central orbit, Pedal's equation
Real Analysis-I	 CO1: Describe sets, functions, real valued functions, countable sets, Least upper Bound axiom and greatest lower bound axiom. CO2: Give different types of sequences and its properties CO3: Describe limit superior, limit inferior and Cauchy sequence CO4: Explain basic concepts of series and absolute and conditional convergence of the series

Abstract Algebra-I	 CO1: Explain elementary concepts of sets, functions and integrals CO2: Describe group, subgroup, counting principle, Normal subgroup, Quotient groups, Homomorphism CO3: Define Ring, some special types of ring CO4: Describe Ideals, Maximal Ideals, Explain quotient ring, polynomial ring
Ordinary Differential Equations-I	 CO1: Classify different types of functions and Explain complex exponential function and their properties, Solve system of linear equations CO2: Describe and find the solution of first order linear differential equations CO3: Evaluate the solution of linear equations with constant coefficients
Real Analysis-II	CO1: Find Limits in Metric spaces CO2: Explain continuous functions on Metric spaces CO3: Describe connectedness, completeness and compactness CO4: Describe set of Measure zero, Riemann integral, Fundamental theorem of calculus,Explain Fourier series.
Abstract Algebra-II	CO1: Describe elementary basic concepts of vector spaces CO2: Explain Linear independence and bases CO3: Describe dual spaces and inner product spaces CO4: Explain modules with illustrations
Ordinary Differential Equations-II	CO1: Evaluate the solution of linear equations with variable coefficients CO2:Identify the solutions are linearly dependent or independent using Wronskian and find the series solution of linear equations with analytic coefficients CO3:Describe and find the solution of linear equations with reguar singular points

B.Sc.Physics	 PSO1: Understand basic concepts of Mechanics, Optics, Thermodynamics and Mathematical methods of Physics PSO2: Use effectively various basic measuring Instruments in laboratory 	Mechanics	 CO1: Describe acceleration due to gravity, Newton's law of gravitation and basics of potential and fields CO2: Discuss basic properties of matter, Young's modulus, Bulk modulus and Modulus of rigidity CO3: Discuss properties of matter especially viscosity and surface tension CO4: Define the general terms in acoustics intensity, loudness, reverberation etc.
	 PSO3: Acquire Knowledge of mathematical Physics, Electronics, Statistical Physics and its applications PSO4: Understand basic Laws of practical Physics 	Heat and Thermodynamic s	 CO1: Define Thermal Conductivity, coefficient of thermal conductivity, Thermal diffusivity, and resistivity; give comparison of conductivities of various metals CO2: Describe reason for modification of gas equation; derive Vander Waals equation of state; define critical
	 PSO5: Draw appropriate conclusions on outcomes of experiments PSO6: Acquire ability to understand different types of crystal structures, 		constants CO3: Explain Transport phenomenon, mean free path with expression, thermal conductivity and viscosity CO4: Formulate and solve problems in Thermodynamics and Heat; explain adiabatic Process, isothermal process, reversible process, irreversible process and derive relevant equation, draw indicator diagram
	classical and quantum theory of specific Heat, Electrodynamics with applications and Fibre Optics and its uses	Geometrical and Physical Optics	 CO5: Derive Thermodynamic parameters, Heat engine and Carnot Heat Engine, Maxwell's equation and their applications CO1: Describe and determine concept of cardinal point and different eye pieces
	PSO7: Understand and apply simple basics of Quantum mechanics		CO2: Explain interference phenomenon of light and its relevant experiments CO3: Explain concept of diffraction of light and grating CO4: Describe polarization of light and its related Experiments
	Maxwell's equations PSO9: Gain comprehensive knowledge of various techniques	Electricity and Magnetism	CO1: Describe the concept of Scalar, vector triple product of vector algebra and Solve divergence, gradient and curl CO2: Explain Coulomb's law, Gauss law and dielectrics with mathematical derivation CO3: Explain the concept of Biot-Savrat's Law, Ampere's
	used in laser and its applications		Law and Ballistic Galvanometer CO4: Elaborate growth and decay of LCR circuit

Mathematical Physics and Relativity	 CO1: Explain partial differentiation, successive differentiation and total differentiation CO2: Describe ordinary differential equation and solutions of first and second order differentiation equation CO3: Elaborate theories and methods of statistical Physics and quantum statics CO4: Explain principle of special theory of relativity and derive relevant equations including Einstein equation
Modern Physics	CO1: Explain Photoelectric Effect and its applications in various processes CO2: Describe X- Ray radiation and its spectra CO3: Explain theoretical aspect of Atomic mass, nuclear fission and Energy released in nucleus CO4: Describe Particle accelerator, Cyclotron and Deuterons
General Electronics	CO1: Describe semiconductors, Zener diode, Transistor and give its application CO2: Explain Amplifier, RC coupling and Transistor biasing and discuss its applications CO3: Describe theoretical and practical aspects of Oscillator and Multi-vibrator CO4: Elaborate modulation, FM Modulation and AM wave
Solid State Physics	CO1: Explain types of solids, miller indices, inter planner spacing and different types of Crystal structures CO2: Elaborate concept of inter atomic forces and Kroning Penney Model CO3: Describe classical theory of lattice heat capacity and Debye model; discuss limitations of Debye model CO4: Discuss applications of free electron theory of Metals, Hall effect, Hall voltage and Hall coefficient and importance of Hall Effect CO5: Describe transport properties of electrical conductivity thermal conductivity

Classical and Quantum Mechanics	 CO1- Explain basic concept of Classical Mechanics, mechanics of particle, and mechanics of system of particle by using Newton's laws of motion CO2- Derive Lagrange's equation and its various applications CO3- Explain basic concepts of constraints, its types and Virtual work done CO4- Discuss mathematical basics of quantum mechanics, explain matter wave, Group velocity, particle velocity, operators, wave function and expectation values CO5- Derive Schrodinger time dependent and independent equation and describe particle in one-dimensional box
Electrodynamics	 CO1: Describe and understand diversions, curl, and Gauss Law applications in Electrostatics CO2: Explain concepts of self-induction, mutual induction and equation of continuity CO3: Describe origin of Maxwell's equations in magnetic and dielectric media CO4: Derive electromagnetic wave equation in conduction medium CO5: Explain transport of energy and poyinting vector, poyinting theorem CO6: Describe boundary condition for electromagnetic field vectors B, E, D and H
Atomic, Molecular Physics & LASER	CO1: Explain Thomson's atom model, Rutherford's nuclear atom model and Bohr's atom model CO2: Describe the concepts of Vector atom model, quantum numbers, Coupling Scheme and Pauli's exclusive principle CO3: Explain Zeeman Effect and Stark effect CO4: Describe Rotation, Vibration Spectra, Raman Effect and its applications in various fields CO5: Discuss LASER system and its properties, types of LASER and its medical, biological and industrial applications

		Non- conventional Energy Sources and Optical Fiber	
B.Sc.Botany	PSO1: Understand the basic concepts of taxonomy and ecologyPSO2: Acquire knowledge about economics and medicinal plants in agriculture and medicine	Diversity of Cryptogams-I	 CO1: Identify various types of plants in kingdom Plantae CO2: Identify Cryptogams CO3: Identify various types of Algae CO4: Describe various types of bacteria CO5: Describe various types of fungi CO6: Identify various types of viruses
	PSO3: Analyse the relationship between plants and microbesPSO4: Understand the biology of diversity of seed plants or phanerogams	Morphology of Angiosperms	 CO1: Describe various types of habitat habit and morphological characters CO2: Identify various types of root, stem and leaves CO3: Identify various types of inflorescence and flowers CO4: Identify various types of fruits CO5: Describe modifications of roots stems and leaves
	PSO5: Understand behaviours of fossils and gymnosperm plants PSO6: Understand plant diseases,	Diversity of Cryptogams-II	CO1: Describe Cryptogams CO2: Describe characteristic feature of Bryophytes CO3: Describe Characteristic feature of Pteridophytes CO4: Identify various types of Bryophytes CO5: Identify various types of Pteridophytes
	chemical properties and evolutionary relationship among taxonomic groups	Histology, Anatomy and Embryology	CO1: Describe various types of tissues CO2: Describe anatomical characters of monocot and dicot plants CO3: Describe various types of ovules CO4: Describe vascular elements in tissues

Taxonomy of Angiosperms	 CO1: Describe various Classification Systems of plants CO2: Describe characteristics of various angiosperm families CO3: Describe various taxonomic terminologies CO4: Describe importance of plant studies CO5: Describe various tools used in taxonomy
Plant Ecology	CO1: Describe importance of plant studies CO2: Describe various terminologies used in ecology CO3: Describe soil structure and soil types CO4: Describe various methods of conservation CO5: Describe ecological adaptations in plants
Gymnosperms and Utilization of plants	 CO1: Differentiate angiosperm and gymnosperm CO2: Describe the characteristic feature of gymnosperm plants CO3: Describe economic importance of cereals pulses CO4: Describe importance of timber plants CO5: Describe medicinal values of plants CO6: Describe uses of plants and their parts in various industries
Plant Physiology	 CO1: Describe various physiological processes of plants CO2: Describe photosynthesis CO3: Describe transpiration CO4: Describe respiration CO5: Describe stomata and functions of stomata CO6: Describe osmosis
Cell & Molecular Biology	CO1: Describe Cell and cell structure CO2: Describe molecular basis of cell CO3: Describe various types of cells CO4: Describe mitosis and meiosis CO5: Identify various cell organelles CO6: Describe various stages of cell division

		Diversity of Angiosperms-I	CO1: Describe various Classification Systems of plants CO2: Describe variations among angiosperm families CO3: Describe various types of keys used for plant identification CO4: Describe various floral characters of angiosperm families CO5: Describe importance of plant studies and uses of plants
		Genetics & Biotechnology	CO1: Describe genetics CO2: Describe the basic information about gene, hybridisation and genetic material CO3: Describe various genetic abnormalities CO4: Describe mutation and chromosomal aberrations CO5: Describe uses and applications of r-DNA technology
		Diversity of Angiosperms – II	 CO1: Describe characteristic feature of various families of angiosperm plants CO2: Describe the importance of plants of various families CO3: Describe various tools used in taxonomy CO4: Describe botanical gardens, bio-reservoirs and conserved forests CO5: Describe herbariums and gene banks
M.Sc. Mathematics	 PSO1: Acquire advanced knowledge in Mathematics PSO2: Able to solve complex mathematical problems effectively PSO3: Equip knowledge in various concepts involved in Algebra, Real analysis, Complex analysis, discrete Mathematics, Mechanics, Functional analysis and Difference equations 	Advanced Abstract Algebra- I	 CO1: Describe binary relation, binary operation, group, subgroup, cyclic group CO2: Describe Lagrange's theorem, Fermat's and Euler's Theorem CO3: Explain in detail Normal subgroup, quotient group, fundamental theorem of group homomorphism, automorphism CO4: Explain permutation group, centre, Normaliser, derived group, Cayles Theorem, Describe Normal series, solvable and Nilpotent group, alternating group CO5: State Fundamental theorem of finitely generated abelian group, Sylow theorems and applications

 PSO4: Acquire a breadth and depth of understanding of advances in Mathematics PSO5: Able to solve differential and difference equations PSO6: Acquire the knowledge of stereographic projections in complex analysis 	Real Analysis-I Real Analysis-I Differential Equations-I	 CO1: Explain Riemann Stielties integrals and its properties CO2: Describe sequence and series of functions and learn their tests for Convergence CO3: State Weierstrass theorem, Abel's and Taylor's Theorem CO4: Explain functions of several variables, chain rule CO5: Describe inverse function theorem, implicit function theorem CO1: Explain countable, uncountable sets, principle of induction, metric spaces, open sets, closed sets CO2: Describe Closure of a set, interior of a set and their properties CO3: Describe bases and subbases, product space, weak topology CO4: Describe evaluation map and related results CO5: Describe directed sets, net, cluster point, subnet, ultranet, filter CO1: Describe complex number system CO2: Describe metric spaces, connectedness, compactness, uniform Convergence CO3: Explain elementary properties of exponential function, trigonometric and hyperbolic functions, roots of unity, Cauchy-Riemann equations, harmonic functions CO4: Explain analytic functions as a mapping, Mobius transformations, bilinear transformation CO5: Define the index of a closed curve, Cauchy's theorem, Gaursat's theorem, singularities CO1: Apply method of successive approximations for first order linear differential equations, explain and apply
	Equations-1	 Order linear differential equations, explain and apply Lipschitz condition and Peano's theorem. CO2:Analyze and explain existence of solutions and use of differential inequality CO3:Apply and describe integral inequalities CO4:Analyze existence of solutions of linear systems CO5:Describeand apply adjoint system, periodic system and in-homogeneous systems.

Advanced	CO1: Describe Ring, Ideals and their properties
Advanced Abstract	CO2: Define Vector spaces, Linear dependence and
	1 1 1
Algebra- II	independence, Basis and Modules
	CO3: Explain linear transformation, characteristic roots and
	triangular form
	CO4: Describe Extension field, irreducible polynomial and
	finite fields
	CO5: Describe automorphism of group, Galois Theory,
	polynomial solvable by radicals
Real Analysis-II	CO1: Explain measure, measurable sets, Borel and Lebegue measurability
	CO2: Explain integration of functions of real variable and
	Integration of series CO3: Describe Riemann and Lebeque
	integral and functions of bounded variations CO4: Describe
	abstract measure spaces and integration with respective to a
	Measure
	CO5: Explain LP spaces, convex functions, Jensen's
	inequality and almost uniform convergence
Topology-II	CO1: Describe Separation axioms, T0, T1, T2 spaces, their
ropology II	properties and characterizations
	CO2: Define Normal spaces, T4 spaces, Urysorn's lemma,
	second countable spaces and Lindelof spaces
	CO3: Define compactness, sequentially and countably
	compact spaces
	CO4: Describe Lebesgue covering lemma, Urysohn's
	metrization theorem and metrizability of T0 spaces
	CO5: Explain connected spaces, components, simple chain,
	path wise and Locally connected
Complex	CO1: Explain compactness and convergence in the space of
Analysis- II	Analytic functions, Factorization of the sine function, the
	gamma function
	CO2: Describe Harmonic functions, basic properties of
	harmonic function, Poisson integral formula
	CO3: Describe entire functions, Jensen's formulae, the
	genus and Order of an entire function, Wadamard
	genus and order of an entire function, wadamard
	Factorization theorem
	e

Differential	CO1: Explain basic ideas of Lagrange's identity,
Equations-II	transformation
	CO2:Describe and apply maximum principle to different
	types of problems
	CO3:Explain and apply comparison theorems
	CO4:Describe eigen values and eigen functions
	CO5:Describe non-oscillatory systems.
Functional	CO1: Explain normed linear space, Banach spaces and
Analysis	Examples
	CO2: Describe bounded linear transformations, Hahn-
	Banach Theorem, Reflexive spaces
	CO3: Explain open mapping theorem, closed graph theorem,
	inner product Spaces
	CO4: Describe Hilbert spaces and its properties, Bessel's
	inequality, Parseval's Identity
	CO5: Explain self Adjoint operator, eigen values and eigen
	spaces, finite dimensional spectral theorem
Partial	CO1: Give classification of second order partial differential
differential	equation, Laplace Equations and Poisson's equation
equation	CO2: Describe harmonic functions, Green's function,
	Energy method and uniqueness
	CO3: Explain fundamental solution of heat equation, Initial
	value problem, Mean value formula
	CO4: Describe non-linear first order complete integral
	CO5: Explain transformation method, Fourier transform and
	Laplace transform, arabolic partial differential equation with
	quadratic number linearity, Burger's equation with viscosity
Numerical	CO1: Determine solution of algebraic and transcendental
Analysis	equation by various methods
	CO2: Determine solution of system of linear equation by
	Gauss Elimination method, iteration method, Gauss Seidal
	method, SOR method
	CO3: Explain finite differences, Lagranges and Newton
	interpolation, piecewise and spleen interpolation
	CO4: Explain differentiation and integration
	CO5: Determine solution of ordinary differential equation
	by Taylor's series, Picard method, Euler method, Runge-

Lattice Theory	 CO1: Describe partially order set, lattice as a poset, lattice as a algebra, Hasse Diagram, Meet and join tables CO2: Describe Isotone maps, sublattites, ideals, complete lattice and their Properties CO3: Describe distributive and modular lattice, Demorgan's identities, Boolean algebra, Dedikinds modularity criterion CO4: Describe Stone theorem, distributive lattices with pseudo Complementation CO5: Define join infinite distributive identity, distributive Standard and neutral elements
Operations Research-I	CO1: Explain basics of LPP CO2: Describe and apply graphical and simplex method to find solution of LPP CO3: Describe duality problem and dual simplex method CO4: Explain transportation and assignment problem and apply methods to solve it. CO5: Write a project report
Linear Integral Equations	 CO1: Describe linear integral equations types of linear integral equations, Symmetrical kernel CO2: Find solution of linear integral equations, verification of solution of Linear integral equations CO3: Describe the differential method of finding the solution of Fredholm Integral equation and Volterra integral equations CO4: Describe symmetric kernel, trace of kernel, Hilbert – schmidth Theorem CO5: Describe integral transform methods, Fourier transform, applications to Volterra integral equations, Green's function, approach for ordinary Differential equations
Mechanics	 CO1: Describe D'alemberts principal and Lagrange's equation of motion CO2: Explain Functional, Euler's equations and Motivating problems of calculus of variations CO3: Explain the fixed end point problem for n unknown

	functions and variational problems in parametric form CO4: Describe Hamilton principle and applications of Hamilton's formulation, Cyclic coordinates, conservation theorem CO5: Describe two dimensional motion of rigid bodies Cayley- Klein parameters and related quantities
Linear Algebra	CO1: Explain linear dependence and independence, bases and dimensions of vector spaces CO2: Describe and apply linear transformations CO3: Describe isomorphism, and dual spaces etc. CO3: Explain eigen values, eigen vectors and Caley- Hamilton theorem CO4: Explain inner product spaces and canonical forms
Fuzzy Mathematics	 CO1: Describe theory of Fuzzy sets as measure of uncertainty and ambiguity Fuzzy logic. CO2: Describe basic concepts in fuzzy sets, convex fuzzy sets CO3: Give properties of α-cuts, Decomposition theorem, operations on fuzzy sets CO4: Describe fuzzy arithmetic, fuzzy numbers, arithmetic operations on fuzzy numbers CO5: Explain fuzzy relations, fuzzy prepositions and their interpretation in terms of fuzzy sets, fuzzy rules
Operation Research-II	CO1: Describe and apply dynamic programming to find solution of LPP CO2: Describe and solve nonlinear programming problem CO3:Explain industrial problems using replacement problem CO4:Evaluate shortest path and critical path for a problem CO5: Explain and solve PERT/PM